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One of the major goals of materials science is to relate the
properties of materials to the potential functions that character-
ize the atomic and molecular interactions that hold the material
together. Sharing this ambitious and ongoing quantum-mechanical
program with students is usually beyond the scope of an intro-
ductory course inmaterials science. However, there are situations
where an elementary approach to connecting atomic interactions
to material properties is possible. One of these areas is the use
of the lattice energies and bond energies of metals to predict
the metal surface energies. These calculations are presented here
at a level that is suitable for an introductory materials science
course.

Many phenomena of importance in solids depend on the
properties of the surfaces or interfaces of the materials in question,
rather than properties of the bulk material. Surface and interfacial
tensions are key properties in understanding phenomena such as
crystal faceting, grain structure, crack propagation, capillarity-
driven mass transport, vacancy formation, wetting, and adhesion
(1). The bonding concepts considered here are similar to those
applied to the covalent bond energy that is a central idea in general,
organic, inorganic, and physical chemistry courses (2). Once
determined, the metallic bond strengths are seen to be somewhat
smaller than the energies of the more familiar covalent bonds. For
body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal-
closest-packed (hcp) metals, the bond energy and the lattice
constant can then be used to make reasonably good estimates the
surface energies of solid metals.

Bond Energies for the Bcc and Fcc Metals

The calculation of the bond energy in a metallic lattice is
similar to that in gaseous molecules except that students find it a
little more challenging to determine the number of bonds broken
during atomization. The atomization of a crystalline metal,
M(c), can be represented by the process

MðcÞ f MðgÞ ð1Þ
where the molar energy of atomization of the metal lattice isΔaU
and the gaseous metal is assumed to be entirely monatomic. The
atomization energy is also called the energy of sublimation, the
cohesive energy, or the lattice energy. The calculation of bond
energies from ΔaU will initially be limited to bcc and fcc metals.

Each metallic crystal structure has its own coordination
number, Z, which is the number of nearest neighbors surround-
ing a central atom. The crystal lattice is assumed to be composed
entirely of “hard spheres” of identical radius so that all of the

nearest neighbors “touch” the central atom they surround. The
unit cell geometries for the bcc and fcc metals are shown in
Figures 1A and 2A. The coordination numbers for these two
crystal structures are

ZðbccÞ ¼ 8 ð2Þ
ZðfccÞ ¼ 12

Because the removal of one atom from a metallic lattice causes
the breaking ofZ bonds, it is tempting, but not correct, to assume
that ΔaU = Zε, where ε is the molar bond energy. It is true that
the Z bonds surrounding this atom are broken during atomiza-
tion; however, this process also breaks one of theZ bonds on each
of the adjoining nearest-neighbor atoms. Thus, the ratio of bonds
to atoms in a metallic lattice must be less than Z. The correct
ratio is Z/2, because although each atom is bonded to Z nearest
neighbors, each bond has an atom on each of the two ends.
Hence, the actual ratio, after correcting for double counting,
is Z/2.

Another way to obtain this result is to picture the gaseousM
atoms in eq 1 as having Z half-bonds or “broken bonds” still
attached to each atom. Of course,Z half-bonds is the same asZ/2
full bonds, again leading to the result that in a large crystal lattice
of a pure metal there areZ/2 bonds for every one atom. Thus, for
ametallic lattice, themolar bond energy, ε, can be found from the
equation

ΔaU ¼ Z
2
ε ð3Þ

Equation 3 is based on the assumption that all of the bonding in
the lattice is between nearest-neighbor atoms and that no
interactions exist between more distant neighbors. This assump-
tion is identical to that usually employed when bond energies are
calculated for molecular substances.

Because the molar enthalpy is defined asH=Uþ pV, where
V is the molar volume, and because the metallic vapor is an ideal
gas, the standard molar lattice energy can be obtained from

ΔaH ¼ ΔaU þRT ð4Þ
To illustrate the use of eqs 2-4 with bcc metals, chromium is
selected with Z = 8 and a molar enthalpy of atomization of
ΔaH = 396.6 kJ mol-1 at 25 �C (3). The molar lattice energy is
then ΔaU = ΔaH- RT = 394.12 kJ mol-1. Thus, the energy of
the chromium-chromium metallic bond is

εðCrÞ ¼ ð394:12 kJ mol- 1Þ=4 ¼ 98:53 kJ mol- 1
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The same approach is employed with fcc metals, as illustrated
with copper. Here Z = 12, ΔaH = 338.32 kJ mol-1 (3), ΔaU =
335.84 kJ mol-1, and the copper-copper metallic bond has an
energy of

εðCuÞ ¼ ð335:84 kJ mol- 1Þ=6 ¼ 55:97 kJ mol- 1

We note that in discussions of covalent bonds, some texts
actually provide bond enthalpies rather than bond energies (2).
Both are convenient for the estimation of the energy or enthalpy
change in a chemical reaction, and as in the case of metallic
bonds, there is not a great deal of numerical difference between
the two.

The lattice energies and the bond energies for a variety of bcc
and fcc metals, all calculated in the above fashion, are shown in
Tables 1 and 2. Also included is the lattice constant, a, for each

metal (3) and the bond length,R, for nearest-neighbor bonds that is
obtained from the unit cell geometries in Figures 1A and 2A,

RðbccÞ ¼
ffiffiffi
3

p

2
a ð5Þ

RðfccÞ ¼ affiffiffi
2

p

We note here that the metallic bond energies are generally
somewhat smaller than the covalent bond energies found in
most molecular or polymeric substances (2). Students sometimes
find it difficult to reconcile the high tensile strength of metals
with the fact that metallic bond energies are somewhat lower
than covalent bond energies. A simple explanation is that the
metal lattice has a much larger number of bonds per atom than
do most covalently bonded solids.

Bond Energies for the Hcp Metals

The calculation of the bond energy for the hcp metal crystal
structure is not as straightforward as for the bcc and fcc metals.

Figure 1. (A) The bcc unit cell with a coordination number of 8. (B) The
(110) plane in the bcc cell (atoms in the plane are indicated with shaded
circles). (C) Perpendicular view of the same (110) plane (atoms indicated
with shadedcircles), an adjacent (110) plane (atoms indicatedwith open
circles), and the intersection of a third plane midway between these two
planes with the bonds between the atoms in the two planes (intersections
indicated with an �).

Figure 2. (A) The fcc unit cell. The coordination number is 12. (B) The
(111) plane in the fcc cell (atoms in the plane are indicated with shaded
circles). (C) Perpendicular view of the same (111) plane (atoms indicated
with shadedcircles), an adjacent (111) plane (atoms indicatedwith open
circles), and the intersection of a third plane midway between these two
planes with the bonds between the atoms in the two planes (intersections
indicated with an �).

Table 1. Bond Energies and Bond Lengths for Various Bcc Metals

Metal
ΔaH/

(kJ mol-1)
ΔaU/

(kJ mol-1) ε/(kJ mol-1) a/pm R/pm

Li 159.37 156.89 39.22 351 303.98

K 89.24 86.76 21.69 533.4 461.94

V 514.21 511.73 127.93 302.4 261.89

Cr 396.6 394.12 98.53 288.46 249.81

Mn 280.7 278.22 69.56 891.39 771.97

Fe 416.3 413.82 103.46 286.645 248.24

Rb 80.88 78.40 19.60 562 486.71

Nb 725.9 723.42 180.86 329.86 285.67

Mo 658.1 655.62 163.91 314.7 272.54

Cs 76.065 73.59 18.40 614 531.74

Ba 180 177.52 44.38 502.5 435.18

Ta 782 779.52 194.88 330.29 286.04

W 849.4 846.92 211.73 316.522 274.12

Table 2. Bond Energies and Bond Lengths for Various Fcc Metals

Metal
ΔaH/

(kJ mol-1)
ΔaU/

(kJ mol-1) ε/(kJ mol-1) a/pm R/pm

Al 326.4 323.9 53.99 404.959 286.35

Ca 178.2 175.7 29.29 558.84 395.16

Co 424.7 422.2 70.37 354.41 250.61

Ni 429.7 427.2 71.20 352.38 249.17

Cu 338.32 335.8 55.97 361.47 255.60

Sr 164.4 161.9 26.99 608.49 430.27

Rh 556.9 554.4 92.40 380.36 268.96

Pd 378.2 375.7 62.62 389.08 275.12

Ag 284.55 282.1 47.01 408.626 288.94

Ir 665.3 662.8 110.47 383.92 271.47

Pt 565.30 562.8 93.80 392.40 277.47

Au 336.1 333.6 55.60 407.833 288.38

Pb 195 192.5 32.09 495 350.02
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The theoretical hcp unit cell with its coordination number of 12,
which is identical to the coordination number of fcc metals, and
two lattice constants a and c are shown in Figure 3A. In the fcc
structure, all of the atoms are surrounded by 12 nearest neighbors
that touch the central atom and all of the 12 resulting bonds are
thus identical. The problem for the hcp metals is that none of
them display the theoretical ratio of the two lattice constants,
namely, c/a = 2(2/3)1/2 = 1.633 (4), based on the geometry. In
actuality, some hcp metals have a higher-than-theoretical ratio,
whereas others display a lower-than-theoretical ratio (4).

These two possibilities are most easily visualized if the
central atom is pictured as the atom in the center of the basal
plane of the unit cell shown shaded in Figure 3B. Thus, for hcp
metals where c/a is larger than the theoretical value, it is only
within the planes parallel to the basal plane that the atoms
actually touch, whereas there is no touching between atoms
occupying parallel, adjacent basal planes. Conversely, for hcp
metals where c/a is less than the theoretical value, there is no
atomic contact within the planes parallel to the basal plane, but
there is contact between atoms occupying parallel, adjacent basal
planes. Thus, in hcp metals, only 6 of the 12 surrounding atoms
are true nearest neighbors (that touch the central atom), whereas
the other 6 are slightly more distant atoms (and do not touch the
central atom). As a result, there are two somewhat different
“nearest-neighbor bonds” with differing bond energies and bond
lengths, rather than only one. The lengths of these two bonds can
be seen from the geometry of Figure 3A to be

RbðhcpÞ ¼ a

ð6Þ

RnðhcpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

3
þ c2

4

r

where Rb represents the length of the bonds that are parallel to
the basal plane and Rn is the length of the bonds that are not.

Presumably, a calculation based on eq 3 with Z = 12 would
yield an average, εav, of the energy of the bonds parallel to the
basal plane, εb, and those that are not, εn. This approximation,
based on the theoretical value of the c/a ratio, will be employed
here for the purpose of subsequent bond-energy and surface-
energy calculations. The approximation seems to be justified by
the reasonably good agreement between experimental and pre-
dicted surface energies for the hcp metals considered here. Hcp
titanium is used to illustrate the calculation of εav for a hcpmetal.
UsingΔaH = 469.9 kJ mol-1 (3) and the approximationZ = 12,
ΔaU = 467.42 kJ mol-1 and

εavðTiÞ ¼ ð467:42 kJ mol- 1Þ=6 ¼ 77:90 kJ mol- 1

The average bond energy for a variety of hcp metals as well as the
lattice constants (3) and their ratio c/a are shown in Table 3.
Neither of the two bond lengths are calculated from eq 6 because
neither length corresponds to the “average bond”.

Surface Tension and Surface Energy

The surface tension, γ, of a solid can be simply defined as the
work required to create new surface area (at constant tempera-
ture, volume, and composition) divided by the area created in the
process. The surface tension, γ, is related to the surface free
energy, f, through the equation γ= fþΣiμiΓi, where μi andΓi are
the chemical potential and the surface excess concentration of
the ith component, respectively (5, 6). For a pure substance and a
planar interface, the Gibbs dividing surface can be located so that
Γ = 0 and then

γ ¼ f ¼ u-Ts ¼ γ0 þT
dγ
dT

ð7Þ

where u=γ0 is the surface energy or the surface tension at absolute
zero and s =-dγ/dT is the surface entropy. If γ decreases linearly
with temperature, as it commonly does, then γ0 and dγ/dT
are both constant. Regardless of whether the temperature depen-
dence of γ is linear or nonlinear, γ0 can be found by extrapolation
of the surface-tension data (7, 8) to absolute zero. The extrapola-
tion can be performed either directly from experimental data
or through the observation that the temperature coefficient of
the surface tension, dγ/dT, is usually constant and falls within
the range of dγ/dT =-(0.27( 0.07) � 10-3 J m-2 K-1 (7, 9)
for most metals. An alternative approach exists for finding γ0
and γ for a solid metal by using liquid metal data and rather
simple theoretical arguments for the estimation of γ and γ0 for
the solid metal (10). Clearly, for metals at room temperature, the
difference between γ and γ0 is often small and is, in fact,
sometimes ignored.

Surface-Energy Estimations for Bcc, Fcc, and Hcp Metals

The surface energy of a solidmetal can be easily estimated from
the bond energy, ε, and the experimental lattice constants for the
metal. This approach is often referred to as the broken-bond model
of surface energy and has been successfully employed formany years
in estimating surface tensions and in understanding the much-
noticed correlation between the surface tension or surface energy
and the sublimation energy ofmetals (9, 11, 12). The process can be
visualized as the cleavage of the solid along a particular crystallo-
graphic plane. According to the broken-bond model, this work can
be estimated by counting up the total energy of the bonds broken

Figure 3. (A) The hcp unit cell. The coordination number is 12. (B) The
(0001) plane in the hcp cell (atoms indicated with shaded circles). (C)
Perpendicular view of the same (0001) plane (atoms indicated with
shaded circles), an adjacent (0001) plane (atoms indicated with open
circles), and the intersection of a third plane midway between these two
planes with the bonds between the atoms in the two planes (intersections
indicated with an �).
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in the process. The appropriate area can be found from the lattice
constant for the metal.

The surface tension depends on the particular crystallo-
graphic plane along which the cleavage is envisioned. The plane
selected for this calculation is the most stable plane, which is the
plane with the lowest surface tension (because of free energy
minimization). These planes are singular or atomically smooth
planes that are also the closest-packed plane and are usually the
slip plane (13).

For the bcc structure, the closest-packed plane is the (110)
plane. This plane (with its shaded atoms) is shown is Figure 1B,
whereas the arrangement of atoms in the same plane and an
adjacent parallel plane is shown in Figure 1C. The location of the
intersection of the bonds between the two, adjacent layers with a
plane midway between the two layers is marked with an�. These
intersections are thought of as the points of bond breakage. This
atomic plane can be replicated via the rectangular surface unit cell
shown in Figure 1C, which has an area of 21/2a2. The number of
broken bonds within the rectangle is 2 þ 4(1/2) = 4. Thus,
because two of these areas are formed during cleavage,

2
ffiffiffi
2

p
a2γ0ðbccÞ ¼ 4ε

L
ð8Þ

γ0ðbccÞ ¼
ffiffiffi
2

p
ε

La2

where L = 6.02214� 1023 mol-1 is the Avogadro constant. The
estimation of a surface energy from eq 8 is illustrated for bcc Cr,
using the previous value of ε = 98.53 kJ mol-1 = 98.53 � 103 J
mol-1 and the experimental lattice constant of a = 288.46 pm
=288.46 � 10-12 m, yielding

γ0ðCrÞ ¼ 2:780 J m- 2

This estimate is in excellent agreement with the experimental
surface tension of γ(Cr) = 2.400 J m-2 (14) at 1600 �C and a
surface energy from eq 7 of

γ0ðCrÞ ¼ ½2:400þð1873Þð0:27� 10- 3Þ� J m- 2

¼ 2:91 J m- 2

For the fcc structure, the closest-packed plane is the (111)
plane, which is shown in Figures 2B and 2C. Again Figure 2C

shows two adjacent atomic layers, along with the intersection of a
plane midway between the layers with the bonds between the
layers. This atomic plane can be replicated via the hexagonal
surface unit cell shown in Figure 1C. (Technically, the surface
unit cell is actually a parallelogram made up of two adjacent
equilateral triangles out of the six shown in the hexagon.) The
area of a regular hexagon with an edge length of l is (3 3 3

1/2/2)l2.
Because l = a/21/2, the area expressed in terms of the lattice
constant is (3 3 3

1/2/4)a2. The hexagon contains 9 broken bonds,
so that the surface energy can be found from

2 3

ffiffiffi
3

p

4

 !
a2γ0ðfccÞ ¼ 9ε

L
ð9Þ

γ0ðfccÞ ¼ 2
ffiffiffi
3

p
ε

La2

The use of eq 9 is illustrated with fcc Cu, using the previous value
of ε = 55.97 kJ mol-1 and the experimental lattice constant of
a = 361.47 pm, yielding

γ0ðCuÞ ¼ 2:46 J m- 2

which is in fairly good agreement with the experiment value of
1.78 J m-2 (10).

For the hcp structure, the closest-packed plane is the (0001) or
basal plane, which is shown in Figures 3B and 3C. The two adjacent
atomic layers are shown in Figure 3C, along with the intersection of
a plane midway between the layers with the bonds between the
layers. The surface unit cell is similar to that in Figure 2C except that
in this case the length of the edge of the regular hexagon is l = a, so
that the area of the hexagon is (3 3 3

1/2/2)a2. Thus, the surface
energy can be found from

2 3

ffiffiffi
3

p

2

 !
a2γ0ðhcpÞ ¼ 9εav

L
ð10Þ

γ0ðhcpÞ ¼
ffiffiffi
3

p
εav

La2

The use of eq 10 is illustrated with hcp Ti, using the previous
value of εav = 77.904 kJ mol-1 and the experimental lattice

Table 3. Bond Energies and Lattice Constant Ratios for Various Hcp Metals

Metal ΔaH/(kJ mol-1) ΔaU/(kJ mol-1) εav/(kJ mol-1) a/pm c/pm c/a

Be 324.6 322.1 53.69 228.55 358.32 1.5678

Mg 147.7 145.2 24.20 320.94 521.03 1.6234

Sc 377.8 375.3 62.55 330.9 527.3 1.5935

Ti 469.9 467.4 77.90 295.11 468.43 1.5873

Zn 130.729 128.3 21.38 266.47 494.69 1.8565

Y 421.3 418.8 69.80 364.74 573.06 1.5711

Zr 608.8 606.3 101.05 323.21 514.77 1.5927

Tc 678 675.5 112.59 274.3 440 1.6041

Ru 642.7 640.2 106.70 270.58 428.11 1.5822

Cd 112.01 109.5 18.26 297.94 561.86 1.8858

Hf 619.2 616.7 102.79 319.46 505.1 1.5811

Re 769.9 767.4 127.90 276.09 445.76 1.6145

Os 791 788.5 131.42 273.43 432 1.5799
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constant of a = 295.11 pm, yielding

γ0ðTiÞ ¼ 2:573 J m- 2

which is in fairly good agreement with the experimental value of
2.08 J m-2 (10).

In the above surface-energy calculations, the error of the
various estimates ranges from4 to 40%.The error estimates should
not be taken too literally, however, because of (i) the lengthy
extrapolation required of the experimental data to absolute zero
and (ii) the notoriously problematic nature of liquid or solidmetal
surface-tension measurements because of the difficulty in obtain-
ing metallic surfaces that are not contaminated by impurities (9).
In addition, some of the assumptions of the model oversimplify
metallic binding, in particular that (i) only nearest-neighbor
interactions are important and (ii) surface bonds have the same
strength as those in the interior of the solid, despite differences in
coordination number.Note that if either eq 8, 9, or 10 is combined
with eq 3, it is apparent that a2γ0 is proportional to ΔaU. This
correlation was observed many years ago (9, 11, 12) and is a major
part of the justification for viewing metallic bonding in a way that
is similar to covalent bonding. Of course, there are other phenom-
ena that further justify this metallic bonding approach to the
interpretation of surface and bulk properties (15).

Conclusion

It has been shown that the lattice energy, crystal structure,
and coordination number of a metal can be used to calculate the
bond energy of metallic solids. Once obtained, these bond
energies can then be employed to make reasonable estimates of
the surface energy of the closest-packed (and most stable)
crystallographic plane of the solid. This procedure illustrates,

on a fairly elementary level, the possibility of predicting material
properties from knowledge of the interatomic or intermolecular
interaction energy, which is one of the primary goals of materials
science.

Literature Cited

1. See, for example , Somorjai, G. A. Introduction to Surface Chemistry
and Catalysis; John Wiley & Sons: New York, 1994.

2. See, for example , Levine, I. A. Physical Chemistry, 5th ed.;
McGraw-Hill: New York, 2002; pp 166-167 and 680-681.

3. Emsley, J. The Elements, 3rd ed.; Oxford University Press:
Oxford, 1998.

4. Smith, W. F. Foundations of Materials Science and Engineering, 3rd
ed.; McGraw-Hill: New York, 2004; pp 73-77.

5. Johnson, R. E., Jr. J. Phys. Chem. 1959, 63, 1655–1658.
6. Hudson, J. B. Surface Science: An Introduction; JohnWiley&Sons:

New York, 1992; pp 89-93.
7. Murr, L. E. Interfacial Phenomena in Metals and Alloys; Addison-

Wesley Publishing Co.: Reading, PA, 1975; pp 122-125.
8. Handbook of Physical Quantities; Grigoriev, I. S.,Meilikhov, E. Z.,

Eds.; CRC Press: Boca Raton, FL, 1997; p 417.
9. Allen, B. C. Trans. AIME 1963, 227, 1175–1183.

10. Tyson, W. R.; Miller, W. A. Surf. Sci. 1977, 62, 267–276.
11. Somorjai, G. A. Introduction to Surface Chemistry and Catalysis;

John Wiley & Sons: New York, 1994; p 273.
12. Skapski, A. S. J. Chem. Phys. 1948, 16, 389–393.
13. Smith, W. F. Foundations of Materials Science and Engineering, 3rd

ed.; McGraw-Hill: New York, 2004; pp 211-216.
14. Allen, B. C. Trans. AIME 1969, 245, 1621–1632.
15. See, for example , Somorjai, G. A. Introduction to Surface Chemistry

and Catalysis; John Wiley & Sons: New York, 1994; pp
400-441.


